Problem Analysis Session

SWERC judges

December 2, 2018

Number of submissions: about 2500 Number of clarification requests: 28 (20 answered "No comment.")

Languages:

- 1533 C++
- 34 C
- 232 Java
- 330 Python 2
- 233 Python 3

A – City of Lights

Solved by 83 teams before freeze. First solved after 6 min by **Team RockETH**.

This was the easiest problem of the contest.

Problem

Toggle regularly spaced lights at every step, and print the maximum number of turned-off lights.

Straightforward solution

- Keep an array with the light status (or a bit set).
- Keep the number of currently turned-off lights in a variable.

K – Dishonest Driver

Solved by 18 teams before freeze. First solved after 17 min by **Team RacIETH**.

Problem

Given a string, compute the length of its shortest compressed form. How to build a compressed form:

- one character c (size: |c|=1),
- concatenation w_1w_2 (size: $|w_1w_2| = |w_1| + |w_2|$),
- repetition $(w)^n$ (size: $|(w)^n| = |w|$).

Solution in time $\mathcal{O}(N^3)$

Dynamic programming on:

F(i,j) =size of compressed form of substring $u_{ij} = u_i \dots u_{j-1}$

If j = i + 1, then F(i, j) = 1. Otherwise:

- Try splitting $u_{ij} = u_{ik}u_{kj}$ for any position $k \in [i+1, j-1]$;
- Try factorizing u_{ij} into $u_{ij} = u_{ik}^n$:
 - What are the factorizations of u_{ij} ?
 - Trick: search second occurence of u_{ij} in $u_{ij}u_{ij}$
 - $\mathcal{O}(N)$ with KMP (e.g., use C++ stdlib find function)

Note: we also have a $\mathcal{O}(N^2 \log N)$ algorithm

E – Rounding

Solved by 39 teams before freeze. First solved after 23 min by **SNS 1**.

SWERC judges

E – Rounding

First bounds

Each monument \mathbf{m} with rounded value $\mathbf{round}_{\mathbf{m}}$ had an original value $\mathbf{origin}_{\mathbf{m}}$ such that:

- $\text{origin}_{m} \ge \min_{m}$, with $\min_{m} = \max\{0, \text{round}_{m} 0.50\};$
- origin_m \leq max_m, with max_m = min{100, round_m + 0.49}.

Possible or not?

Possible if and only if

$$\sum_{\mathbf{m}} \min_{\mathbf{m}} \leqslant 100 \leqslant \sum_{\mathbf{m}} \max_{\mathbf{m}}.$$

E – Rounding

Solution

- Compute $minSum = \sum_{m} min_{m}$ and $maxSum = \sum_{m} max_{m}$
- Return IMPOSSIBLE if minSum > 100 or maxSum < 100
- Real minimal value for monument m: realMin_m = max{min_m, max_m - (maxSum - 100)}
- Real maximal value for monument m: realMax_m = min{max_m, min_m + (100 - minSum)}

Main causes for wrong answers

- Allowing original values < 0 or > 100
- Using floating point numbers
- Result formatting issues

Solved by 28 teams before freeze. First solved after 29 min by **UPC-1**.

Dynamic programming **on the grid** would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

Dynamic programming on the grid would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

Note that perimeter is in $\mathcal{O}(N)$ and use it to compute only the mandatory extreme values in time $\mathcal{O}(N)$.

Dynamic programming **on the grid** would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

Note that perimeter is in $\mathcal{O}(N)$ and use it to compute only the mandatory extreme values in time $\mathcal{O}(N)$.

Even simpler:

- You only need to keep track of the size of the largest square.
- Start from the first line and grow the maximum square from there, increasing its size at each new line when possible, else changing the starting line.

D – Monument Tour

Solved by 38 teams before freeze. First solved after 37 min by **Blaise1**.

D – Monument Tour

Coordinates

0, 2, 2, <mark>2</mark>, <mark>3</mark>, 3, 3, 6

Solution

- the main road will always pass through at least one monument
- the best placement is the median of the *y* coordinates of the extreme points of "monument segments"

Monument Segment

- keep only the extremes of y coordinates corresponding to the same x
- count single points as a segment (i.e., count y coordinate twice)

Solved by 13 teams before freeze. First solved after 83 min by **Team RacIETH**.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

Naive approach in time $\mathcal{O}(N^3)$

For all pairs of limiting monuments $\mathbf{M} \neq \mathbf{M}'$, compute the grade difference $\Delta_{\mathbf{M},\mathbf{M}'}$ from scratch.

Better approach in time $\mathcal{O}(N^2 \log(N))$

- order monuments M' ≠ M clockwise, based on the direction of (M M');
- compute differences $\Delta_{M,M'}$ incrementally.

I – Mason's Mark

Solved by 8 teams before freeze. First solved after 100 min by **ENS UIm 1**.

I – Mason's Mark

Many solutions are possible. For example:

Find connected components in a grid

Black dots form connected components, one of them contains the frame, others are single noise dots, and the remaining correspond to marks.

One possibility

Let M be manson's mark. Determining its bounding box. Now either inspect two particular points, or comparing the size of M with a threshold, in order to determine the type of M.

H – Travel Guide

Solved by 4 teams before freeze. First solved after 118 min by **Team RaclETH**.

SWERC judges

Moving from a graph problem towards a vector problem

Three passes of Dijkstra algorithm to compute the distance from each POI to each node. $\mathcal{O}(|E| \times \log(|E|))$

We sort the vectors by lexicographical order.

x_1	y_1	z_1
<i>x</i> ₂	<i>y</i> ₂	<i>z</i> ₂
<i>x</i> 3	<i>y</i> ₃	Z ₃

$x_n \quad y_n \quad z_n$

Key observation

A vector v_i	is minimal <i>iff</i> it is minimal among
the vectors	v_1, \ldots, v_i without considering the x
coordinate.	

Idea: Maintain the 2D minimal vectors

Maintain a list of minimal vectors sorted by increasing y with a tree. Note that it is sorted by decreasing z!

Checking that (y, z) is minimal

Is
$$z < z'$$
 for all (y', z') with $y' < y$?

Inserting (y, z) as a minimal

Remove all z < z' and y' < y?

Note that you need to deal with duplicates.

Solved by 1 team before freeze. First solved after 154 min by **ENS UIm 1**.

Problem

Given 4 streams X_1, X_2, X_3, X_4 of pseudo-random *n*-bit integers, find $x_1 \in X_1, \ldots, x_4 \in X_4$ such that $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$.

Naive solution in $\mathcal{O}(2^{n/2})$ (exceeds time limit)

- Store $\mathcal{O}(2^{n/2})$ values from X_1 in a hashmap.
- Pick $x_3 \in X_3$ and $x_4 \in X_4$ arbitrarily.
- Iterate over $x_{2,i} \in X_2$, look for $x_{2,i} \oplus x_3 \oplus x_4$ in the hashmap.
- We expect to find a match after $\mathcal{O}(2^{n/2})$ steps by Birthday Paradox.

Solution in $\mathcal{O}(2^{n/3})$ (space and time)

- Build a list of x₁ ⊕ x₂ when x₁ and x₂ match on their n/3 least significant bits. When using O(2^{n/3}) values from X₁ and X₂, the list has O(2^{n/3}) elements by Birthday Paradox.
- Do the same on X_3, X_4 .
- The two lists generated have O(2^{n/3}) elements of only 2n/3 bits. By Birthday paradox, we expect O(1) matches.

G – Strings

Solved by 1 team before freeze. First solved after 235 min by **ENS UIm 1**.

G – Strings

Source

Ropes: an Alternative to Strings Boehm, Atkinson, Plass, 1995

Main ideas

- do not concatenate strings, build binary trees instead
- ropes are immutable, thus sharing is possible

Implementation

- rope length in $\mathcal{O}(1)$
- substring of a leaf in $\mathcal{O}(1)$, else recursively in $\mathcal{O}(N)$

Overall complexity

 $\mathcal{O}(N^2)$

Not solved before freeze.

Source

Knuth, The Art of Computer Programming forthcoming volume 4B, pre-fascicle 5b Introduction to Backtracking Word Rectangles (page 8)

Backtracking Algorithm

- fill the grid, in any order
- \bullet +1 when completely filled

Data Structure

- build two tries, for horizontal and vertical words
- maintain pointers into these tries, for the columns and the row
- speed up the lookup at the intersection with sparse, sorted branches in your tries (see ex. 28)