Problem Analysis Session

SWERC judges

December 2, 2018

Statistics

Number of submissions: about 2500
Number of clarification requests: 28 (20 answered "No comment.")

Languages:

- 1533 C++
- 34 C
- 232 Java
- 330 Python 2
- 233 Python 3

A - City of Lights

Solved by 83 teams before freeze.
First solved after 6 min by Team RockETH.

This was the easiest problem of the contest.

Problem

Toggle regularly spaced lights at every step, and print the maximum number of turned-off lights.

Straightforward solution

- Keep an array with the light status (or a bit set).
- Keep the number of currently turned-off lights in a variable.

K - Dishonest Driver

Solved by 18 teams before freeze.
First solved after 17 min by Team RacIETH.

K - Dishonest Driver

Problem

Given a string, compute the length of its shortest compressed form. How to build a compressed form:

- one character $c($ size: $|c|=1)$,
- concatenation $w_{1} w_{2}\left(\right.$ size: $\left.\left|w_{1} w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|\right)$,
- repetition $(w)^{n}$ (size: $\left.\left|(w)^{n}\right|=|w|\right)$.

K - Dishonest Driver

Solution in time $\mathcal{O}\left(N^{3}\right)$

Dynamic programming on:

$$
F(i, j)=\text { size of compressed form of substring } u_{i j}=u_{i} \ldots u_{j-1}
$$

If $j=i+1$, then $F(i, j)=1$. Otherwise:

- Try splitting $u_{i j}=u_{i k} u_{k j}$ for any position $k \in[i+1, j-1]$;
- Try factorizing $u_{i j}$ into $u_{i j}=u_{i k}^{n}$:
- What are the factorizations of $u_{i j}$?
- Trick: search second occurence of $u_{i j}$ in $u_{i j} u_{i j}$
- $\mathcal{O}(N)$ with KMP (e.g., use C++ stdlib find function)

Note: we also have a $\mathcal{O}\left(N^{2} \log N\right)$ algorithm

E - Rounding

Solved by 39 teams before freeze.
First solved after 23 min by SNS 1.

E - Rounding

First bounds

Each monument m with rounded value round ${ }_{m}$ had an original value origin $_{m}$ such that:

- origin ${ }_{m} \geqslant \min _{m}$, with $\min _{m}=\max \left\{0\right.$, round $\left._{m}-0.50\right\}$;
- origin $_{m} \leqslant$ max $_{m}$, with $\max _{m}=\min \left\{100\right.$, round $\left.{ }_{m}+0.49\right\}$.

Possible or not?

Possible if and only if

$$
\sum_{m} \min _{m} \leqslant 100 \leqslant \sum_{m} \max _{m}
$$

Solution

- Compute minSum $=\sum_{m} \boldsymbol{m i n}_{m}$ and maxSum $=\sum_{m}$ max $_{m}$
- Return IMPOSSIBLE if minSum >100 or maxSum <100
- Real minimal value for monument m :
realMin ${ }_{m}=\max \left\{\min _{m}, \max _{m}-(\operatorname{maxSum}-100)\right\}$
- Real maximal value for monument \mathbf{m} : realMax ${ }_{m}=\min \left\{\max _{\mathbf{m}}, \min _{\mathrm{m}}+(100-\operatorname{minSum})\right\}$

Main causes for wrong answers

- Allowing original values <0 or >100
- Using floating point numbers
- Result formatting issues

B - Blurred pictures

Solved by 28 teams before freeze.
First solved after 29 min by UPC-1.

B - Blurred pictures

Dynamic programming on the grid would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

B - Blurred pictures

Dynamic programming on the grid would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

Note that perimeter is in $\mathcal{O}(N)$ and use it to compute only the mandatory extreme values in time $\mathcal{O}(N)$.

B - Blurred pictures

Dynamic programming on the grid would take time $\mathcal{O}(N \times N) \longrightarrow$ time limit exceeded

Note that perimeter is in $\mathcal{O}(N)$ and use it to compute only the mandatory extreme values in time $\mathcal{O}(N)$.

Even simpler:

- You only need to keep track of the size of the largest square.
- Start from the first line and grow the maximum square from there, increasing its size at each new line when possible,
 else changing the starting line.

D - Monument Tour

Solved by 38 teams before freeze.
First solved after 37 min by Blaise1.

D - Monument Tour

Coordinates

0, 2, 2, 2, 3, 3, 3, 6

Solution

- the main road will always pass through at least one monument
- the best placement is the median of the y coordinates of the extreme points of "monument segments"

Monument Segment

- keep only the extremes of y coordinates corresponding to the same x
- count single points as a segment (i.e., count y coordinate twice)

F - Paris by Night

Solved by 13 teams before freeze.
First solved after 83 min by Team RacIETH.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

Better approach in time $O\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathrm{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

Better approach in time $O\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathrm{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

Better approach in time $O\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathrm{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{\mathbf{M}, \mathbf{M}^{\prime}}$ from scratch.

Better approach in time $O\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathrm{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{M, M^{\prime}}$ from scratch.

Better approach in time $O\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathbf{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{M, M^{\prime}}$ from scratch.

Better approach in time $\mathcal{O}\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathrm{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

F - Paris by Night

Naive approach in time $\mathcal{O}\left(N^{3}\right)$

For all pairs of limiting monuments $\mathrm{M} \neq \mathrm{M}^{\prime}$, compute the grade difference $\Delta_{M, M^{\prime}}$ from scratch.

Better approach in time $\mathcal{O}\left(N^{2} \log (N)\right)$

For all limiting monuments M :

- order monuments $\mathbf{M}^{\prime} \neq \mathrm{M}$ clockwise, based on the direction of ($\mathrm{M} \mathrm{M}^{\prime}$);
- compute differences $\Delta_{M, M^{\prime}}$ incrementally.

I - Mason's Mark

Solved by 8 teams before freeze.
First solved after 100 min by ENS Ulm 1.

I - Mason's Mark

Many solutions are possible. For example:

Find connected components in a grid

Black dots form connected components, one of them contains the frame, others are single noise dots, and the remaining correspond to marks.

One possibility

Let M be manson's mark. Determining its bounding box. Now either inspect two particular points, or comparing the size of M with a threshold, in order to determine the type of M.

H - Travel Guide

Solved by 4 teams before freeze.
First solved after 118 min by Team RacIETH.

H - Travel Guide

Moving from a graph problem towards a vector problem

Three passes of Dijkstra algorithm to compute the distance from each POI to each node. $\mathcal{O}(|E| \times \log (|E|))$

We sort the vectors by lexicographical order.

Key observation

x_{1}	y_{1}	z_{1}
x_{2}	y_{2}	z_{2}
x_{3}	y_{3}	z_{3}
\cdots		
x_{n}	y_{n}	z_{n}

H - Travel Guide

Idea: Maintain the 2D minimal vectors

Maintain a list of minimal vectors sorted by increasing y with a tree.
Note that it is sorted by decreasing z!

> Checking that (y, z) is minimal Is $z<z^{\prime}$ for all $\left(y^{\prime}, z^{\prime}\right)$ with $y^{\prime}<y$?

Inserting (y, z) as a minimal

Remove all $z<z^{\prime}$ and $y^{\prime}<y$?
Note that you need to deal with duplicates.

J - Mona Lisa

Solved by 1 team before freeze.

First solved after 154 min by ENS Ulm 1.

J - Mona Lisa

Problem

Given 4 streams $X_{1}, X_{2}, X_{3}, X_{4}$ of pseudo-random n-bit integers, find $x_{1} \in X_{1}, \ldots, x_{4} \in X_{4}$ such that $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}=0$.

Naive solution in $\mathcal{O}\left(2^{n / 2}\right)$ (exceeds time limit)

- Store $\mathcal{O}\left(2^{n / 2}\right)$ values from X_{1} in a hashmap.
- Pick $x_{3} \in X_{3}$ and $x_{4} \in X_{4}$ arbitrarily.
- Iterate over $x_{2, i} \in X_{2}$, look for $x_{2, i} \oplus x_{3} \oplus x_{4}$ in the hashmap.
- We expect to find a match after $\mathcal{O}\left(2^{n / 2}\right)$ steps by Birthday Paradox.

J - Mona Lisa

Solution in $\mathcal{O}\left(2^{n / 3}\right)$ (space and time)

- Build a list of $x_{1} \oplus x_{2}$ when x_{1} and x_{2} match on their $n / 3$ least significant bits. When using $\mathcal{O}\left(2^{n / 3}\right)$ values from X_{1} and X_{2}, the list has $\mathcal{O}\left(2^{n / 3}\right)$ elements by Birthday Paradox.
- Do the same on X_{3}, X_{4}.
- The two lists generated have $\mathcal{O}\left(2^{n / 3}\right)$ elements of only $2 n / 3$ bits. By Birthday paradox, we expect $\mathcal{O}(1)$ matches.

J - Mona Lisa

G - Strings

Solved by 1 team before freeze.
First solved after 235 min by ENS Ulm 1.

G - Strings

Source

Ropes: an Alternative to Strings
Boehm, Atkinson, Plass, 1995

Main ideas

- do not concatenate strings, build binary trees instead
- ropes are immutable, thus sharing is possible

Implementation

- rope length in $\mathcal{O}(1)$
- substring of a leaf in $\mathcal{O}(1)$, else recursively in $\mathcal{O}(N)$

Example

Overall complexity
 $\mathcal{O}\left(N^{2}\right)$

C - Crosswords

Not solved before freeze.

C - Crosswords

Source

Knuth, The Art of Computer Programming forthcoming volume 4B, pre-fascicle 5b Introduction to Backtracking Word Rectangles (page 8)

Backtracking Algorithm

- fill the grid, in any order
- +1 when completely filled

Data Structure

- build two tries, for horizontal and vertical words
- maintain pointers into these tries, for the columns and the row
- speed up the lookup at the intersection with sparse, sorted branches in your tries (see ex. 28)

